

Aims

The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Introduction

Written methods of calculations are based on mental strategies. Each of the four operations builds on mental skills which provide the foundation for jottings and informal written methods of recording. Skills need to be taught, practised and reviewed constantly. These skills lead on to more formal written methods of calculation.

Strategies for calculation need to be represented by models and images to support, develop and secure understanding. This, in turn, builds fluency. When teaching a new strategy it is important to start with numbers that the child can easily manipulate so that they can understand the methodology.

The transition between stages should not be hurried as not all children will be ready to move on to the next stage at the same time, therefore the progression in this document is outlined in stages. Previous stages may need to be revisited to consolidate understanding when introducing a new strategy.

A sound understanding of the number system is essential for children to carry out calculations efficiently and accurately.

Magnitude of Calculations

Year $1-U+U, U+T U$ (numbers up to 20) including adding zero, $U-U, T U-U$ (numbers up to 20) including subtracting zero, $\mathrm{U} \times \mathrm{U}, \mathrm{U} \div \mathrm{U}$

Year 2-TU + U, TU + multiples of 10, TU + TU, U + U + U, TU - U, TU - tens, TU-TU,TU x U, U $\div U$

Year 3 - add numbers with up to three-digits, HTU + multiples of 10, HTU + multiples of 100, subtract numbers up to three-digits, HTU - U, HTU - multiples of 10, HTU - multiples of 100, HTU - HTU, $T U \times U, T U \div U$

Year 4 - add and subtract numbers with up to four-digits, ThHTU + ThHTU, ThHTU - ThHTU, add and subtract decimals with up to two decimal places in the context of money, multiply three numbers together, $T U \times U, H T U x U, T U x U$, multiply by zero and one, $T U \div U, H T U \div U$

Year 5 - add and subtract numbers with more than four-digits, add and subtract decimals with up to three decimal places, ThHTU x U, ThHTU x TU, HTU x TU, multiply whole numbers and decimals with up to three-decimal places by 10, 100 and 1000, divide numbers with up to four-digits by U (including remainders as fractions and decimals and rounding according to the context)

Year 6 - add and subtract numbers with more than four-digits, add and subtract decimals with up to three decimal places, multiply numbers with up to four-digits by TU, multiply numbers with up to two-decimal places by a whole number, divide numbers up to four-digits by TU (interpreting remainder according to the context), divide decimals up to two-decimal places by U or $T U$

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. ... pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

National Curriculum 2014

Structuring Learning

Children must have concrete experiences that enable them to create visual images. They should be encouraged to articulate their learning and to become pattern spotters.

Symbols

bead string

place value apparatus

number line

double sided counters

Structures of Addition (Haylock and Cockburn 2008)

Children should experience problems with all the different addition structures in a range of practical and relevant contexts e.g. money and measurement

Aggregation

Union of two sets
How many/much altogether?
The total

Augmentation

Start at and count on Increase by

Go up by

Commutative law

Understand addition can be done in any order Start with bigger number when counting on (Explain to children that subtraction does not have this property)

is the same as/equal to (=)

Addition

Structures of Subtraction (Haylock and Cockburn 2008)

Children should experience problems with all the different subtraction structures in a range of practical and relevant contexts e.g. money and measurement

Partitioning

Take away
... how many left?
How many are not? How many do not?

Comparison

What is the difference?
How many more?
How many less (fewer)?
How much greater?
How much smaller?

Inverse-of-addition

What must be added?
How many (much) more needed?

There are ten pegs on the hanger how many are covered?

Reduction

Start at and reduce by
Count back by
Go down by
-00000-00000-00000-00000-00000-00000

Subtraction
Pupils develop the concept of addition and subtraction and are enabled to use these operations flexibly.
Addition and subtraction should be taught together.

End of Year Expectations

Year 1

Understand subtraction as taking away
What is ... less than ...?)

Compare quantities to say how many less and/or how many more

Year 2

Understand subtraction as taking away and finding the difference

Ensure children understand that subtraction is not commutative (can not be done in any order)

Children should be able to partition numbers in different ways

Possible Concrete and Visual Representations										
0	${ }^{1}$	${ }^{2}$	${ }^{3}$	4	5	6	7	8	9	${ }^{10}$
$\mathbf{5 - 3}$										
0	1	2	3	4	5	6	7	8	9	10
	1			1	1		1	1	1	

r0000000000-0000000000-00000000000-0000000000v

'two less than five is three'

Use practical resources such as bears, counters, cubes and number lines/hundred grids and progress to a resource such as Numicon to encourage counting back in groups rather than ones
 rs

Children may begin recording pictorially progressing to recording number sentences alongside

Children could use printed Numicon icons and stick these in, again progressing to recording number sentences alongside

Children apply, develop and secure their understanding of place value and begin to record using jottings and number sentences

Count backwards (including crossing 100) any given number
Switch count between ones and tens e.g. 33, 32, 31, 30, 20, 10
Represent and use subtraction facts linked to number bonds up to 20 (establish addition and subtraction as related operations)
Find one less than a number Find ten less than a number

Fluency

Count back in multiples of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s starting on multiples to highlight pattern

Practise addition and subtraction facts to 20

Show increasing fluency in deriving subtraction facts for numbers up to 10 and then up to 20

Use known facts to 20 to derive new facts e.g. 3+7$30+70$
Use knowledge to derive and use subtraction number facts up to 100

Subtraction
Pupils develop the concept of addition and subtraction and are enabled to use these operations flexibly.
Addition and subtraction should be taught together.

 numbers with up to three decimal places
(formal written column method) ENSURE CHILDREN HAVE THE OPPORTUNITY TO SUBTRACT DECIMALS, WITH DIFFERING NUMBERS OF DIGITS

Solve multi-step problems in contexts, deciding which operations and methods to use and why

Solve more complex calculations mentally

Structures of Multiplication (Haylock and Cockburn 2008)

Children should experience problems with all the different multiplication structures in a range of practical and relevant contexts e.g. money and measurement

Repeated addition

So many lots (sets) of so many
How many (how much) altogether
Per, each

Scaling

Scaling, scale factor Doubling, trebling
So many times bigger than (longer than, heavier than, and so on)
So many times as much as (or as many as)

Commutative law

Scaling, scale factor
Doubling, trebling
So many times bigger than (longer than, heavier than, and so on)
So many times as much as (or as many as)

$\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times$ a are equal

4×2 is the same as/equal to 2×4

Multiplication - multiplication and division should be taught together- refer to structures of multiplication

Multiplication - multiplication and division should be taught together- refer to structures of multiplication

Structures for Division (Haylock and Cockburn 2008)

Children should experience problems with the different division structures in a range of practical and relevant contexts e.g. money and measurement
Equal-sharing
Sharing equally between
How many (much) each?

6 shared equally by 2 | Inverse of multiplication |
| :---: |
| (Grouping) |

Ratio structure

comparison
inverse of scaling structure of multiplication scale factor (decrease)

Barney earns three times more than Fred. If Barney earns $£ 900$ how much does Fred earn?

Jo's journey to school is three times as long as Ella's. If Jo walks to school in 30 minutes how long does it take Ella?

Division
Pupils develop the concept of multiplication and division and are enabled to use these operations flexibly.
Multiplication and division should be taught together.

Teacher Modelling/Children's Recording
Fluency

Year 1

Solve single step practical problems involving division

Use concrete objects, pictorial representations

Understand division as grouping and sharing

Use the language of 'sharing equally between'

Year 2

Solve single step practical problems involving division
Use concrete objects, pictorial representations

Understand division as grouping
Find halves and then quarters
Work with a range of materials and contexts in which multiplication and division relate to grouping and sharing discrete quantities and to arrays

Practical only e.g. link to small world
Using concrete objects, pictorial representations and arrays with the support of an adult - take photographs/draw pictures - if using Numicon small icons could be stuck in
straw bundles

Numicon and counter arrays

four lots two lots of two offour

flexible array

Division - multiplication and division should be taught together- refer to structures of division
End of Year Expectations

Recognise, find and name $1 / 2$ and $1 / 4$ of an object, shape or quantity
Understand the link between unit fractions and division

Connect $1 / 10$ to division by 10 Count in tenths

Year 4

Become fluent in the formal written method of short division with exact answers when dividing by a one-digit number

Divide one- or two-digit numbers by 10 or 100 , identifying value of digits as tenths or hundredths
Solve two-step problems in different contexts, choosing the appropriate operation, working with increasingly harder numbers including correspondence questions e.g. three cakes shared equally between 10 children

Possible concrete and visual representation
Cuisenaire to Statue is 3 metres represent scaling

Children should use manipulatives alongside algorithms

Ensure children see/understand the link between grouping on a number line
 and vertical recording for chunking

$95 \div 5=\underline{19}$	
95	Fact Box
-50 ($\underline{10 \times 5 \text {) }}$	$2 \times 5=10$
45	$5 \times 5=25$
$\underline{-25}(\underline{5} \times 5)$	$10 \times 5=50$
20	

$$
\frac{-20}{0}(\underline{4} \times 5)
$$

Fluency

Recall and use related division facts for the 3, 4 and $8 x$ tables (Continue to practise other tables)
Write and calculate mathematical statements for division using what is known

Use division facts to derive related division facts e.g. using $6 \div 3=2$ to work out $60 \div 3=$ 20

Continue to practise recalling division facts for multiplication tables up to 12×12
Practise mental methods and extend this to three-digit numbers for example $200 \times 3=$ 600 into $600 \div 3=200$
Use place value, known and derived facts to divide mentally, including dividing by 1
Recognise and use factor pairs and commutativity in mental calculations

Division - multiplication and division should be taught together- refer to structures of division

End of Year Expectations

Year 5

Identify factors, including finding all factor pairs of a number, and common factors of two numbers

Practise and extend the formal written method of short division: numbers up to four-digits by a onedigit number

Interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding as appropriate for the context
Use multiplication and division as inverses

Solve problems involving division including scaling down

Divide whole numbers and those involving decimals by 10, 100 \& 1000

Year 6

Divide numbers up to 4-digits by a 2digit whole number using formal written methods of long division, interpret remainders as whole numbers, fractions or by rounding, as appropriate for the context

Divide numbers with up to 2 decimal places by 1-digit and 2-digit whole numbers, initially in practical contexts involving money and measures
Understand the relationship between unit fractions and division

Recognise division calculations as the inverse of multiplication

Solve problems involving division

Fluency

Count backwards in steps of powers of 10 for any given number up to 1000000
Count backwards with positive/negative whole numbers through zero

Practise mental calculation with increasingly large numbers

Apply all multiplication tables and related division facts frequently, commit them to memory and use them to confidently to make larger calculations

Practise division for larger numbers, using the forma written methods of short and long division

Continue to use all multiplication tables and division facts to maintain fluency

Perform mental
calculations, including with mixed operations and larger numbers

